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Summary 

An analytrcal model IS described for the Impact of a hazard on the surrounding area 
The basis of the model IS a umform population density, the Inverse square law tor the 
decay of the Intensity of the physlcal effect and the lognormal dlstrlbutlon, or problt 
equation, for the relation between the causative, or InJury, factor and the probablhty of 
m_turJ It IS shosn that If these assumptions hold, the number of people Injured may be 
approvlmately estimated by calculatmg the radius for 50 B InJury and assuming that all 
persons mslde the circle suffer InJury while all those outsrde It escape Injury The error In 
this assumption IS given by the factor CJ = exp(u’/2), where D IS the spread parameter of 
the lognormal dlstrlbutlon 

Introduction 

In a hazard assessment which 1s taken to the point of determmmg the risk 
to the public It IS necessary to estimate injury m the area around the hazard 
source In order to do this it 1s necessary to be able to estimate first the in- 
tensity of the physical effect such as heat radiation, explosion overpressure 
or toxic dosage as a function of distance, and then the probablhty of injury 
as a function of this physical intensity 

The paper describes an analytical model for the impact of a hazard on the 
surrounding area The model 1s based on the inverse square law for the decay 
of the mtenslty of the physical effect and on the lognormal dlstnbutlon, and 
hence problt equations, for the relations between the causative, or injury, 
factor, which IS a function of the Intensity of the effect, and the probablhty 
of Injury 

A comparison 1s 
which IS sometunes 
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made between this model and an approximate model 
used In this latter the radius at which there 1s a 50% 
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probability of mJury 1s determmed and it 1s then assumed that all persons 
wlthm the circle suffer injury while all those outside suffer none This short 
cut method greatly reduces the amount of work required m an assessment It 
turns out that this model IS quite accurate m some cases but grossly m error 
In others and that the crucial factor 1s the variance of the dlstrlbutlon de- 
scribing the inJury 

Another slgnlflcant result from the model 1s that the importance of any 
error in the problt equation depends on the variance of the dlstnbutlon If 
the variance is small, some degree of error m It, and m the corresponding 
problt equation parameters, gives only a small error in the estimate of the 
number of people inJured 

For convenience the argument IS based primarily on Injury, but the same 
conslderatlons apply to damage 

The model depends on the appllcablhty of the inverse square law to the 
Intensity of the physical effect from the hazard source This IS illustrated 
usmg simple models of thermal radiation, explosion overpressure and toxic 
concentration and dosage The extension to more complex models for these 
phenomena IS not attempted 

Approxunate model 

The approximate model, or short cut method, IS to estimate the number 
of people who suffer InJury from the relation 

N, = nr+, (1) 

where d, 1s the population density (persons/m*), N, the total number of 
people 1nJured and rSO the radius at which the probablhty, P, of inJury IS 
0 5 (m) 

In other words, It is assumed that the number of people within the circle 
of radius rso who escape Injury 1s approximately equal to the number of 
those outside the circle who suffer mJury These two groups, therefore, 
cancel each other out and the net effect IS as If all those within the circle 
but none of those outside suffer InJury 

If the probablhty of inJury varies in a manner such as that shown m Fig 
1. the assumption appears reasonable as applied to a lme of persons exposed, 
since the two shaded areas of the figure will approximately cancel out If the 
apphcatlon 1s to persons exposed over an area, however, the numbers m the 
outer annulus are likely to exceed those m the inner annulus At first sight. 
therefore, it appears that this approach must Involve some degree of error 

This approximate model IS often suggested as a short cut method of 
estimation 

An analogous approximation was tested in the RiJnmond Report [l] It 
was assumed m the toxic gas release model that all those inside and none of 
those outside the 50% lethal contour would be killed A check on this 
assumption showed that it was not very satisfactory for offslte deaths, but 
gave reasonable results for onslte deaths, where the cloud edge was relatlve- 
ly sharp 
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1 
a 

Distance, r 

Fig 1 General torm of the varlatlon ot probablllty of InJury with distance 

InJury-distance relatlons 

In principle the mtenslty--dlstance, or decay, relations which describe 
the varlatlon of the intensity of the physical effect with distance, depend on 
the particular physical phenomenon involved 

In consldermg the intensity of the physical effect from a hazard source. it 
IS convenient to define a radius r. wlthln which the intensity 1s so high that 
the probablhty of mjury 1s unity The intensity is used here in the form of 
the normahsed intensity, I, which has the values 

l> 1 I-< l-0 (2a) 

1=1 r = r. (2b) 

1-c 1 r> r. (2c) 

The normahsed intensity, I, 1s obtained by dlvldmg the actual intensity by 
the value of the Intensity at which the probability of injury is effectively 
unity It IS then a matter of Indifference whether for values of r less than r. 
the value used for I m the relation for the estimation of the probability of in- 
Jury IS 1 or greater than 1 

One common type of decay relation is exponential This may be represent- 
ed by the relation 

1 = exp[-(r - r,)/r,] r-2 r. 

where r, 1s a scaling parameter (m) 
Another type of decay relation IS the inverse square law This may be 

represented by the relations 

1 
1=- 

(rlro)2 
= (r-,/r)’ (4b) 

r-2 r. 
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The radius rO may be regarded as broadly equivalent to the radius of the 
physlcal phenomenon considered For example, It might be the radms of a 
fireball However, m eqns (3) and (4) It should be treated simply as a 
parameter which 1s used to fit the calculated intensity decay curve 

In practice, many of the physical phenomena of Importance m hazard 
assessment have an approximately inverse square law decay The inverse 
square law applies to heat radiation from fires and fireballs It applies 
approximately to peak overpressure from condensed phase explosions over 
the overpressure range of main interest It also apphes approximately to con- 
centration and dosage of toxic gas in many sltuatlons, although here the 
position IS more complex 

A fuller account of the appllcablhty of the inverse square law to these 
different hazards IS given m _4ppendlx 1 

An inverse square law relation for the decay of the intensity of the physlcal 
effect is assumed in the treatment which follows 

Dlrectlonal effects 

Some physlcal phenomena are dlrectlonal and affect not a circular area 
around the hazard source but an area which 1s a sector with its apex at the 
source The most Important phenomena of this type are those mvolvmg 
toxic gas release 

The model given 
sector is considered 
subsectors that the 
ly uniform 

here is fully applicable to this case, provided only this 
and the sector IS subdivided into a sufficient number of 
condltlons along any arc in the subsector are essentlal- 

InJury factor 

The factor which correlates with mJury is not necessarily the mtenslty of 
the physical effect, but may be some function of this, such as a power func- 
tion or a tune Integral. For example, for eardrum rupture the InJury factor 1s 
the peak overpressure itself, but for toxic deaths it 1s a tune Integral with con- 
centration or time raised to some power It 1s therefore this causative factor, 
or InJury factor, which 1s used m InJury correlations This factor is used here 
m the form of the normahsed inJury factor, x 

Lognormal dlstnbutlon and problt equation 

The relation between the injury factor and the probablhty of InJury tends 
to follow a lognormal dlstnbutlon For this dlstrlbutlon the density func- 
tion, f(x), is 

f(x) = tz,:’ 2ox 
exp[-(ln x - m*)2/2u2] (5) 
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where m* and u are the locatron and spread parameters of the dlstnbution 
Where this 1s so the relation can convemently be cast m the form of a 

probit equation The probit, Y, IS defmed by the relation 

1 Y-5 
p=- s (2n)’ 2 __ 

exp (-~‘12) du (64 

= f(Y) (6b) 

The probabihty, P, 1s identical to the dlstnbution functron, F(x), of the log- 
normal dlstnbutlon Then 

J-(x)= JX f(x)& (7) 
0 

=P (8) 

The problt equation is usually written in the form 

Y=k, +k, lnx (9) 

Then from eqns (5~( 9) 

k, = 5 - m*/o (1W 

k2 = l/a (lob) 

Probit equations are described by Fmney [2] In particular, he discusses 
the relation between the lognormal distribution and the problt equation and 
gives tables and graphs relating probits and probabihtles 

Alternative model 

The model of hazard impact now descrrbed was originally developed in 
order to investigate the degree of error m the approximate model The 
prmcipal assumptions are that the intensity~M.ance relation for the physlcal 
effect is the mverse square law, that the m~ury factor-mJury probability 
relation is the lognormal distnbutlon and that the population is uniformly 
distnbuted around the hazard source from a radius of zero to a radius at 
which the effect becomes neghgible. The assumption is also made that where 
the inJury factor 1s not actually identical to the intensity of the physrcal 
effect it is a lmear or at least a power law function of it. It can be seen from 
eqns (9) and (10) that this latter case is equivalent to a simple modification 
of the constants m the probit equation, or, alternatively, of the parameters 
of the lognormal distnbution 

The model consists of the followmg equations 

N,= J 2ndpP( r)r dr (11) 
0 



1 
P= s 

x 1 
- exp [-(ln x - m*)*/2az ] dx 

(2?l)“% o x 

x = (ro/r)2 

It can be shown that eqns (ll)-(13) yield the result 

N, = n&dp exp (u2/2) 

The derivation of this equation is given in Appendix 2 

(14) 

Equation (14) may be wrltten in the form 

N, = nr&,d,$ 

with 

(15) 

$ = exp (02/2) (16) 

where @ is a correction factor which allows for the effect of the variance 
Then companng eqn (1) with eqns (15) and (16), it can be seen that eqn 
(15) reduces to eqn (1) as u tends to zero and $I to unity 

The characterlstlcs of this model have been investigated numerically The 
cases considered, Cases 1 and 2, are shown m Table 1, and some results for 
these two cases are given m Figs 2(a) and 2(b), respectively In both cases 
the value of r,, 1s 100 m Case 1 1s that of a dlstrlbutlon with a narrow spread 
(a = 0 25), while Case 2 is that of a distribution with a wide spread (a = 1) 

TABLE 1 

Eatlmatlon of mlurles around a hazard source 

Case 1 Case 2 

Parameters 
d, (persons/m’) 

r. (m) 
m* 

Results 

rso (m) 
N, (ew 1) 
@ 
N, (ew 15) 

0 001 0 001 

100 100 

-183 -183 

0 25 1 00 

250 250 
196 196 

1 03 1 65 
202 318 

The location parameter, m*, 1s the same m the two cases (-1 83). and since 
it IS this which determines the value of r5,,, this also 1s the same at 250 m in 
both cases The figures show the varlatlon with distance of the probability of 
m]ury and the number of people injured The probablhty of inJury falls off 
with distance, while the number of people inJured passes through a maxl- 
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Fig 2 Probablhty of InJury and number of people mJured with distance 
some generallsed problt equations (a) Case 1, (b) Case 2 
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mum For Case 1 the estimates of the number of people inJured are 196 
using the approximate equation (eqn 1) and 202 using the exact equation 
(eqn 15), while for Case 2 the correspondmg values are 196 and 318 The 
error m the approximate model is therefore much greater for Case 2, that 
with the higher variance 

Problt equations for industrml hazards 

A number of problt equations applicable to industrial hazards have been 
given in the literature The largest set appears of be that of Elsenberg et al 

[31, which cover fire, explosion and toxic hazards and which have been 
summarlsed by Lees [4] These problt equations were stated by these authors 
to be very approximate and they have been the subJect of some cnticism 
Other authors [5-71 have even further problt equations, which are mainly 
for toxic hazards and some of which represent revlslons of the Elsenberg 
equations 

A selection of these problt equations 1s given in Table 2 The table gives 
the parameters of the problt equations and of the correspondmg lognormal 
dlstrlbutlons for the case where the inJury factor 1s unnormahsed Alter- 
natively, the injury factor may be normahsed (X Q 1) It 1s convenient to 
normahse by the value of the InJury factor which corresponds to a probablh- 
ty of injury of 0 999 Table 2 gives this value of the m~ury factor and the 
parameters of the problt equations and of the correspondmg lognormal 
dlstrlbutlon for the normahsed case for some of the hazards 

Dlscusslon 

From the model derived for the common case of inverse square law decay 
the number of people mJured 1s given by eqn (15) This equation reduces to 
the approximate model of eqn (1) as the spread parameter, u, tends to zero 
and the vanance correction factor, @, tends to unity 

The values of u and d for the problt equations given m Table 2 he in the 
following ranges 

No of equations 

12 u<O6 I<@<12 
3 06<u<O9 12<$1<15 
2 u>o9 @>15 

The value of the spread parameter, u, depends on the degree of homo- 
genelty wlthm the overall population Lack of homogeneity may be due to 
differences m susceptlblhty wlthm a nommally slmllar population, e g , 
healthy adults, and m part due to mlxmg of populations, e g , healthy adults 
and children and/or old people 

The smallness of the variance correction factor for the case where the val- 
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ue of the spread parameter 1s low has unportant lmphcatlons In denvmg m- 
Jury-mtenslty relations there 1s generally greater confidence m the 50% m- 
Jury value than m other values such as, say, those for 10% or 90% injury 
This m turn means that there 1s greater confidence m the value of m* than 
there 1s m that of u The likely form of the limits on the relation between 
the mjury factor and the problt for inJury is sketched in Fig 3, which 
shows that the limits tend to be relatively close at the 50% injury value but 
to diverge for lower and higher values The results obtamed here mdlcate 
that, provided u is small, the estimate of the number of people 1nJured is not 
very sensitive to errors m the value of this parameter 

5 

LN X 

Fig 3 General form of the confidence IlmIts for relation between qury 
factor and problt for Injury 

It follows from this that m using this model to make an assessment or to 
determine the error involved it may be preferable to use separate problt 
equations for homogeneous sections of the population, each with a relatlve- 
ly small spread, rather than a single problt equation for the whole popula- 
tion with a large spread 

The value of the model 1s seen, however, as much m increasing under- 
standing of the impact of hazards on the surrounding area as m provldmg a 
short cut estimation method 

The model is based on the assumption of the inverse square law for the 
decay of the intensity of the physical effect This has been Justified using 
simple models for fu-e, explosion and toxic release Another assumption 1s 
that the inJury factor 1s related to the mtenslty of the physical effect lmear- 
ly or by a power law These two features would bear further study 
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List of symbols 

c 
c 
dP 
Dtd 
E 

f(x) 
F 

F(x 1 

fi 
k,v k2 
L 
m 
m* 
n 

n,(r) 
N, 
PO 
P 

:* 
F 

“0 
FS 
t 
T 
IA 

W 
X 

X 

Y 
z 
u 

i 
a 

concentration (various units - see text) (Table 2 only) 
diffusion parameter (mn”2) (Append= 1 only) 
density of population ( persons/m2) 
total integrated dosage ((kg/m3) mm) 
heat radiated by fireball (kW) 
density function for inJury 
heat radiated by fireball on target (kW/m2) (Appendix 1 only) 
dlstrlbutlon function for inJury 
normahsed intensity of physical effect 
unpulse (N s/m2) 
constants m problt equation 
distance from centre of fireball to target (m) 
alternative locatlon parameter m lognormal dlstnbutlon 
location parameter in lognormal dlstnbutlon 
dlffuslon index 
number of people inJured at distance F 

total number of people inJured 
peak overpressure of explosion (N/m’) 
probability of inJury 
mass rate of release (kg/s) 
mass released (kg) 
radial distance (m) 
radius of physical phenomenon (m) 
scaling parameter (m) 
time (vanous units - see text) 
time mterval (mm) 
wmd velocity (m/s) 
mass of explosive (kg) 
normahsed injury factor 
downwmd distance (m) (Append= 1 only) 
problt 
scaled distance (m/kg” ‘) 
spread parameter m lognonnal dlstnbutlon (u2 = vanance) 
concentration ( kg/m3) 
correction factor for effect of vanance 
normal dlstnbutlon function 

Subsmpt 
50 for probablhty of injury equal to 0.5 
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Appendix 1 

The simpler models for the physical phenomena which are of mterest m 
hazards work tend to give an approximately inverse square law for the decay 
of the mtenslty of the physical effect with distance 

The heat radiation from a fireball 1s given by Roberts [8] as 

F = E/4nL= (Al 1) 

where E 1s the heat radiated (kW), F the heat radiated on the target (kW/m’) 
and L the distance from the centre of the fireball to the target (m) 

Similar equations apply to other types of fire such as pool fires and flares 
Thus the equation for heat radlatlon from a flare given by HaJeck and Lud- 
wig [9] and quoted m API RP 521 [lo] has this general form 

The peak overpressure from the explosion of a high explosive 1s a function 
of the scaled distance 

P O = f(z) 

w&h 

2 = r/Wlt3 

(Al 2) 

(Al 3) 
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where p” 1s the peak mcldent overpressure (N/m2), W the mass of explosive 
(kg) and z the scaled distance (m/kg’ 3, The function m eqn (Al 2) IS 
usually provided m graphical form, such as the curves mven by Baker et al 
[ll] However, over a large part of the overpressure range of practical 
interest the curve, which 1s a log-log plot, has a slope of approximately -2 
so that 

p” Q: l/rZ (Al 4) 

The vmatlon with distance of the concentration of a toxic gas cloud 1s 
more complex Here agam, however, many sltuatlons approximate to an m- 
verse square law 

For a neutral density gas a commonly used set of equations are those of 
Sutton [12] For an instantaneous release the concentration x (kg/m’) at 
ground level on the centre lme of the cloud and at cloud centre 1s 

2Q* 
x = =3 2p(Ut)(3t2)(2-n) 

(Al 5a) 

For neutral condltlons, n = 0 25 

x 0: 1/x2 6 

The total Integrated dosage, &j ((kg/m3) s), 1s 

(Al 5b) 

D - 
2Q* 

tld - 7rC u(uty-” 
(Al 6a) 

Settmg n = 0 25 

Dtld a l/x’ ” (Al 6b) 

For a continuous release the concentration at ground level on the centre 
lme of the cloud 1s 

2Q 
X= 

7HZ2 UX2-n 
(Al 7a) 

Settmg n = 0 25 

x a l/x’ ls (Al 7b) 

The total mtegrated dosage is obtained by assummg that the contmuous re- 
lease m fact lasts for some fmlte tune Then the total mtegrated dosage IS 

Dtd a l/x’ 7s (Al S) 

As stated earlier, the decay predicted by more complex models, such as 
those for unconfmed vapour cloud explosion and heavy gas dlsperaon, 1s 
beyond the scope of the present treatment 
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Append= 2 

The model consldered IS that m eqns (11)-(13) An alternatlve location 
parameter, m, may be defined 

m = exp m* (A2 la) 

m*=Inm (A2 lb) 

Some other relations which are relevant are as follows The injury factor 
xSO and the radius r5,, at which the probablhty of InJury 1s 50% (P = 0 5) 
are obtained from eqns (9)-(10) by puttmg Y = 5 so that 

x50 = exp m* 

=m 

From eqn (13) 

(A2 2a) 

(A2 2b) 

r50 = Fo/X;;2 

= ro/m”2 

= r,/exp (m*/2) 

It may be noted that as m* tends to zero, rso tends to rO 
Now let 

y=lnx 

Then 

(A2 3) 

(A2 4a) 

(A2 4b) 

(A2 5) 

1 

s 

Y 

P(r) = 
(277)’ 2f.7 _m 

exp I-(Y 

Let 

2 = (y - m*)/o 

Then 

1 .? 
P(r) = - s (2nF2 _m 

exp (-z2/2) dz 

m*)2/2u2] dy (A2 6) 

(A2 7) 

(A2 8a) 

= O(z) (A2 8b) 

where a(z) 1s the normal cumulative dlstrlbutlon function 
Then, from eqns (13), (A2 5), (A2 7) and (A2 8), eqn (11) becomes 

N, = 
s 

27~d,@ [(21n r. - 21n F - m*)/a] r dr (A2 9) 
0 
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Let 

u = (21n r0 - 21n r - m*)/a 

Then 

N, = nr~dp exp (-m*) / u exp(-au)@(u)du 
-0D 

= ~lr’, d, exp (-m*)I 

where 

I= - s u exp(-ou)@(u)du 
-0D 

Integratmg by parts 

I = [-exp(-uu)@( u)] rW + s exp(-au)@‘(u) du 
-m 

(A2 10) 

(A2 lla) 

(A2 llb) 

(A2 12) 

(A2 13) 

The limits are 

u+= exp(-uu)@(u) = 0 X 1 = 0 

u -+ --m exp(-uu)+(u) = 0 

The derivation of the second of these limits 1s as follows For u < -40 

1 
J 

u 
@(u) = - exp (-u*/2) du < 

1 u 

(277)’ z _oo s (2nP2 _m 
exp (2011) dv = 

1 

(2n)’ * 20 
exp (2uu) (A2 14) 

since for u < -40, exp (-~‘12) < exp (2uu) Hence for sufflclently large 
negatwe u, exp (-au)@(u) < k exp (uu) Hence the first term m eqn 
(A2 13) is zero 

Then 

z= s exp (-au)@‘(u) du (A2 15a) 
-00 

1 
=- 

s (2n)“* _m 
exp (-uu) exp (-~‘12) du (A2 15b) 

Completmg the square m the combmed exponent 
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1 00 
I= - 

(27T)’ 2 __ s exp (02/2) exp [-(u + 0)~/2] du (A2 16) 

= exp (0~12) (A2 17) 

since the remammg factor 1s simply the normal probablhty mtegral with mean 
-u and variance 1 

Then eqn (A2 11) becomes 

N, = n&dp exp (-m*) exp (0’12) 

and hence from eqn (A2 3) 

N, = ar:,dp exp (~~12) 

= nr:,d,,# 

where 

$ = exp (u2/2) 

(A2 18) 

(A2 19) 

(A2 20) 

(A2 21) 


