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Summary

An analytical model i1s described for the impact of a hazard on the surrounding area
The basis of the model 1s a uniform population density, the inverse square law tor the
decay of the intensity of the physical effect and the lognormal distribution, or probit
equation, for the relation between the causative, or injury, factor and the probability of
injury It 1s shown that if these assumptions hold, the number of people injured may be
approximately estimated by calculating the radius for 50% injury and assuming that all
persons 1nside the cwrcle suffer injury while all those outside it escape injury The error 1n
this assumption 1s given by the factor ¢ = exp(0?/2), where ¢ 1s the spread parameter of
the lognormal distribution

Introduction

In a hazard assessment which 1s taken to the point of determiming the risk
to the public 1t 1s necessary to estimate injury 1n the area around the hazard
source In order to do this it 1s necessary to be able to estimate first the 1n-
tensity of the physical effect such as heat radiation, explosion overpressure
or toxic dosage as a function of distance, and then the probability of 1njury
as a function of this physical intensity

The paper describes an analytical model for the impact of a hazard on the
surrounding area The model 1s based on the inverse square law for the decay
of the intensity of the physical effect and on the lognormal distribution, and
hence probit equations, for the relations between the causative, or injury,
factor, which 1s a function of the intensity of the effect, and the probability
of injury

A comparison 18 made between this model and an approximate model
which 1s sometimes used In this latter the radius at which there 1s a 50%
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probability of mjury 1s determined and it 1s then assumed that all persons
within the circle suffer injury while all those outside suffer none This short
cut method greatly reduces the amount of work required 1n an assessment [t
turns out that this model 1s quite accurate 1n some cases but grossly in error
in others and that the crucial factor 1s the varnance of the distribution de-
scribing the injury

Another significant result from the model 1s that the importance of any
error in the probit equation depends on the variance of the distrbution If
the variance 1s small, some degree of error in 1t, and 1n the corresponding
probit equation parameters, gives only a small error in the estimate of the
number of people 1njured

For convemence the argument 1s based primarily on mnjury, but the same
considerations apply to damage

The model depends on the applicability of the inverse square law to the
intensity of the physical effect from the hazard source This 1s illustrated
using simple models of thermal radiation, explosion overpressure and toxic
concentration and dosage The extension to more complex models for these
phenomena 1s not attempted

Approximate model

The approximate model, or short cut method, 1s to estimate the number
of people who suffer injury from the relation

N|="r§0dp (1)

where d, 15 the population density (persons/m?), N, the total number of
people injured and rs, the radius at which the probability, P, of injury 1s
05 (m)

In other words, 1t 1s assumed that the number of people within the circle
of radius r; who escape injury 1s approximately equal to the number of
those outside the circle who suffer injury These two groups, therefore,
cancel each other out and the net effect 1s as if all those within the circle
but none of those outside suffer injury

If the probability of injury varies 1n a manner such as that shown in Fig
1, the assumption appears reasonable as applhied to a line of persons exposed,
since the two shaded areas of the figure will approximately cancel out If the
application 1s to persons exposed over an area, however, the numbers in the
outer annulus are likely to exceed those 1n the inner annulus At first sight,
therefore, 1t appears that this approach must involve some degree of error

This approximate model 1s often suggested as a short cut method of
estimation

An analogous approximation was tested 1n the Ryyjnmond Report [1] It
was assumed 1n the toxic gas release model that all those 1nside and none of
those outside the 50% lethal contour would be killed A check on this
assumption showed that 1t was not very satisfactory for offsite deaths, but
gave reasonable results for onsite deaths, where the cloud edge was relative-
ly sharp
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Fig 1 General torm of the vanation ot probability of injury with distance

Injury—distance relations

In principle the intensity—distance, or decay, relations which describe
the varation of the intensity of the physical effect with distance, depend on
the particular physical phenomenon involved

In considering the intensity of the physical effect from a hazard source, 1t
1s convenient to define a radius r, within which the intensity 1s so high that
the probability of injury 1s unity The 1ntensity 1s used here 1n the form of
the normalised intensity, 1, which has the values

1>1 r<rg (2a)
1=1 r=rg, (2b)
1<1 r>rg (2c)

The normalised 1ntensity, i, 1s obtained by dividing the actual intensity by
the value of the intensity at which the probability of injury 1s effectively
unity It 1s then a matter of indifference whether for values of r less than r,
the value used for 1 in the relation for the estimation of the probability of in-
jury is 1 or greater than 1

One common type of decay relation 1s exponential This may be represent-
ed by the relation

t = expl—(r—ro)irs] r=rg (3)

where rg 1s a scaling parameter (m)
Another type of decay relation 1s the inverse square law This may be
represented by the relations
1

) (r/ro)? ’

= (ro/r) (4b)

v

ro (4a)
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The radius r, may be regarded as broadly equivalent to the radius of the
physical phenomenon considered For example, 1t might be the radius of a
fireball However, in eqns (3) and (4) 1t should be treated simply as a
parameter which 1s used to fit the calculated intensity decay curve

In practice, many of the physical phenomena of importance in hazard
assessment have an approximately inverse square law decay The inverse
square law applies to heat radiation from fires and fireballs It apples
approximately to peak overpressure from condensed phase explosions over
the overpressure range of main interest It also applies approximately to con-
centration and dosage of toxic gas i1n many situations, although here the
position 1s more complex

A fuller account of the applicability of the inverse square law to these
different hazards 1s given in Appendix 1

An 1nverse square law relation for the decay of the intensity of the physical
effect 1s assumed 1n the treatment which follows

Directional effects

Some physical phenomena are directional and affect not a circular area
around the hazard source but an area which 1s a sector with its apex at the
source The most important phenomena of this type are those involving
toxic gas release

The model given here 1s fully applicable to this case, provided only this
sector 1s considered and the sector 1s subdivided into a sufficient number of
subsectors that the conditions along any arc in the subsector are essential-
ly uniform

Injury factor

The factor which correlates with injury 1s not necessarily the intensity of
the physical effect, but may be some function of this, such as a power func-
tion or a time 1ntegral. For example, for eardrum rupture the injury factor 1s
the peak overpressure itself, but for toxic deaths 1t 1s a time integral with con-
centration or time raised to some power It i1s therefore this causative factor,
or injury factor, which 1s used 1n injury correlations This factor 1s used here
in the form of the normahised injury factor, x

Lognormal distribution and probit equation

The relation between the injury factor and the probability of injury tends
to follow a lognormal distribution For this distribution the density func-
tion, f(x),1s

flx) = exp[—(ln x — m*)?/2¢?] (5)

(2m)! 2ox
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where m* and o are the location and spread parameters of the distribution
Where this 1s so the relation can conveniently be cast in the form of a
probit equation The probut, Y, 1s defined by the relation

1 Y-$§
pP= (Zn) f exp (—u?/2) du (6a)
= f(Y) (6b)

The probability, P, 1s identical to the distribution function, F(x), of the log-
normal distribution Then

F(x) = fx flx) dx ()
]

=P (8)
The probit equation 1s usually written in the form
Y=k, +k; Inx (9)
Then from eqns (5)—(9)
k,=5—m*/o (10a)
k,=1/o (10b)

Probit equations are described by Finney [2] In particular, he discusses
the relation between the lognormal distribution and the probit equation and
gives tables and graphs relating probits and probabilities

Alternative model

The model of hazard impact now descrnibed was originally developed 1n
order to investigate the degree of error in the approximate model The
principal assumptions are that the intensity—distance relation for the physical
effect 1s the mverse square law, that the mjury factor—injury probability
relation 1s the lognormal distribution and that the population 1s uniformly
distributed around the hazard source from a radus of zero to a radius at
which the effect becomes negligible. The assumption 1s also made that where
the injury factor 1s not actually identical to the intensity of the physical
effect 1t 1s a linear or at least a power law function of it. It can be seen from
eqns (9) and (10) that this latter case 1s equivalent to a simple modification
of the constants in the probit equation, or, alternatively, of the parameters
of the lognormal distribution

The model consists of the following equations

N= [ 2ndpP(rjrdr (11)

[
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1 * 1
P=———m —exp [—(In x — m*)?/202 ] dx 12)
oy s J Cexpl=( 2120% | (
x = (ro/r)? (13)
It can be shown that eqns (11)—(13) y:eld the result
N, = nriodp exp (0%/2) (14)

The derivation of this equation 1s given in Appendix 2
Equation (14) may be written 1n the form

N, =nriodpo (15)
with
¢ = exp (0%/2) (16)

where ¢ 1s a correction factor which allows for the effect of the variance
Then comparing eqn (1) with eqns (15) and (16), 1t can be seen that eqn
(15) reduces to eqn (1) as ¢ tends to zero and ¢ to unity

The characteristics of this model have been nvestigated numerically The
cases considered, Cases 1 and 2, are shown 1n Table 1, and some results for
these two cases are given 1n Figs 2(a) and 2(b), respectively In both cases
the value of r, 1s 100 m Case 1 1s that of a distribution with a narrow spread
(o =0 25), while Case 2 1s that of a distribution with a wide spread (¢ = 1)

TABLE 1

Estimation of 1njuries around a hazard source

Case 1 Case 2

Parameters

dy, (persons/m*) 0001 0001

ro (m) 100 100

m* —183 —183

a 025 100
Results

rse (M) 250 250

N,(eqn 1) 196 196

o 103 165

N, (eqn 15) 202 318

The location parameter, m*, 1s the same 1n the two cases (—1 83), and since
1t 1s this which determines the value of rs,, this also 1s the same at 250 m in
both cases The figures show the variation with distance of the probability of
injury and the number of people injured The probability of injury falls off
with distance, while the number of people injured passes through a maxi-



361

(,w)ipf'up souelsiq 1un led paimniu -

3|doad Jo IPBquny

~ nEv ipf'lup ajueisid hun ad paintu] _ 9|doad JO saQWNN o ~ - o
p 1 5
Mw m N painly .m 91doaq 4O JagqunN m m 'N painiy| m a|doad o JaquInN m o
T 1. I I 3 , I EFEN iRl A L = -
. u _ _ B R A O T A T O R ,mmﬁ ik L 8
[%Mii [ A N L A I I b4 e P RN L i 5 T4
] A L3 L ! 0 PR ,1 [ 1
1 4 F 4 ; il NS, 2 ! , . . . 3
C i T " T4 I ¢| B
T A +r 3 fopet 4 ; : 4
_ _“ R -+
HE o | il kY o
T FT+r1—T 1- 11 ; . - Wi _
= t i
NEE EEENLEEEE , _ i LREEN |
4+ | T 1 L " P o
A e iy - |
L L -1 4 N Lid414. T 4 o b . ol Ed=te 3 -
ES1- 1 = 1 U ) g 2 o =2
= e : RNEEDE X
BN 1 o E A ] £
L E R g | = IREE B IEES
" 3 13 m v
i L E| W 11l H N1 BEREL
i , , | w ] N A
TS T =] I 2
_ : 4 - e
| i - N T
| 3 Tm H
[ R by HEEREANEFE | V#.I.I* (T
! " I ; I B | AP | |
- ik ARG AmmnR EREas] EEgss ARyEs
:, %!.J , mwg,,, _H l‘l__ T if. T W M\]w\]
ﬁ*ﬁnmm I ! | . L
4 . ! ol 1 I T AN o i ]
M e AL, . LA T Y HTT
is . S A B e Py B T RN i BN
gJ1 & B Il ¢ Lﬁ E i ) = T i 0 9
VA DN 1 O (A I O i 9 i i ! IT71TEF i N T TN =
mp= £ B S M AR - SRS P S NG
aEoiF S AR e e 5 | T n -1 i - kY
2 = =] P ; b i | L™ M, N
bl BT i 2 RERN-UEES
d n = = F
: g i e A BN R
] f ] = = I i ) i e i | T i
3 [ B ] 5 € T % e i o I F . AJE
; il i EhpEeys , M I -
I R T IS A3 s T T
- = = | iR i RN | I i W 1 h:
fz: o i = =+ ] o 1
o ) © o~ w wn 2 L) ~ —_ o o o o o~ © W > - ~ - P=y
- -] o (=] o e o (=] o =] - [>] o (=] =3 (=4 =] o o o
d Anlu) jo Apjigeqosd X 103>e4 Aunly| d Amluj jo Aypqeqosg X 101de4 Aunluy

2 Probability of injury and number of people injured with distance for

some generalised probit equations (a) Case 1, (b) Case 2

Fig



362

€22%— 0T X931 23L 0 LSZ 9881 LGOE— Lse 2D % SY1eIp erUoWWY

LOT— €3 LE g¥e0 993 062 0v2g— o) saun(ur suno[yy

€8 [— €3LEL6T 2630 Ier 691 1L1— Ls. 0% syjeap suuofy)
280313l INXO0]

IT1— €E6TT 860 8%8 6L2 181— od adexyeaiq sseln

90 1— 68€89 Zve0 986 26 8¢%— od agewep [eInjoniIg

Q%L 0— 898¢ GEZ0 P9 L 9%+ LL3— £ siwswdely 3uif]y wolj saunfug

¥69 0— aTe0% 6320 166 S  16e— r 1oeduwr uro1y setanfug

I1%90— £289L L0Z0 90T 8% 19— r 1edwr wolj syreaq

09 1— 881V1g 8IS0  LOI €61 9GI— od sainjdni wnipreg

L¥Y 0— 6+0922 gb10 61T 169 TLL— od afequowsaey 3unj woiy syjea(
uowsoydxy

121— 9¥6L 1660 LLL 9% 671— yOL/cnl? an] [ood wodj sy1esp uing

12 1— 9v6L 1660 LLL 968  67I—  LOT/ch'I? an} ysey} woij syieap uing
a1
[¢] suorjenba Bzoquasty v

o P Y 'y
» W ‘gSuonedl
pasiBuLIouU 6§66 O = d 40] 10108) sia1owrered siajowsred 10108}
10} 19j9wered aAlzesned Jo an[ep  uoinquIisip rewroudor] uoryenbo jqoag aAljyesne)

suonnqui}sip eutioudo| Sutpuodsaizod ay1 jJo pue suorjenbs jrqoid awos jo sidjaureieq

¢ HTdV.L



363

89580 [{8 Ul §Q 8 S1 ‘¥ JO an[eA YL, 4

2A1309)J3 81 @ Jdurosqng (utwt) rearajur auny st 7, ‘(s) swg si 2 *( w/N) aanssaxdsano yead st ,d ‘(,wi/s N) asindwr st p*(,w/m)
Apisuajur uoneipei st 7 ‘( w/Sw) jswealy uea pue afiag uej pue ‘(;wi/3) poday isuyg Asaue) 10) pdsdxs ‘(wdd) uoierjuadU0D S ),

¢a1

002
98¢ 0

162 0
gev 0

¥S¥ 0
RC 1

0032

0 €%
v 1¢g

Y96
961

€9¢
V6 v

680

g0
061

186 €
99€ ¢

80¢ ¢
28L0

FI1—

S9—
LS98—

6¢€ €€—
|y 1¥—

v L—
FL I

£Ls. 10X

LIX
LOX

LIS
£Ls IT

Lse $IT
Lse 12T

SY38ap SULIO[YD
[L] sasopy pup sty

Sy8ap aulLo[Yy)
SY1Bap BIUOWW Y
[9] 18w aapy una puo afiag uaj

syjeap IINUO[AIDY
syjeap apydins ualoipAy
[1] 1oday puowuiny
q uonenby
e uorjenby
Sy)Bap BIUOWW Y
[¢] 110day 1414 K£aaun)

suorjenboe 1oy g



364

mum For Case 1 the estimates of the number of people 1njured are 196
using the approximate equation (egn 1) and 202 using the exact equation
(eaqn 15), while for Case 2 the corresponding values are 196 and 318 The
error 1n the approximate model 1s therefore much greater for Case 2, that

with the higher variance
Probit equations for industrial hazards

A number of probit equations applicable to industrial hazards have been
given 1n the hiterature The largest set appears of be that of Eisenberg et al
[3], which cover fire, explosion and toxic hazards and which have been
summarised by Lees [4] These probit equations were stated by these authors
to be very approximate and they have been the subject of some criticism
Other authors [5—7] have given further probit equations, which are mainly
for toxic hazards and some of which represent revisions of the Eisenberg
equations

A selection of these probit equations 1s given 1n Table 2 The table gives
the parameters of the probit equations and of the corresponding lognormal
distributions for the case where the injury factor 1s unnormalised Alter-
natively, the mnjury factor may be normalised (x < 1) It 1s convenient to
normalise by the value of the injury factor which corresponds to a probabili-
ty of mjury of 0 999 Table 2 gives this value of the injury factor and the
parameters of the probit equations and of the corresponding lognormal
distribution for the normalised case for some of the hazards

Discussion

From the model derived for the common case of inverse square law decay
the number of people 1njured 1s given by eqn (15) This equation reduces to
the approximate model of egn (1) as the spread parameter, o, tends to zero
and the vanance correction factor, ¢, tends to unity

The values of ¢ and ¢ for the probit equations given in Table 2 hie 1n the
following ranges

No of equations

12 0<06 1<¢<12
3 06<o<09 12<¢<15
2 c>09 $>15

The value of the spread parameter, ¢, depends on the degree of homo-
geneity within the overall population Lack of homogeneity may be due to
differences 1n susceptibility within a nominally similar population, eg,
healthy adults, and 1n part due to mixing of populations, e g , healthy adults
and children and/or old people

The smallness of the variance correction factor for the case where the val-
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ue of the spread parameter i1s low has important implications In deriving 1n-
jury—intensity relations there 1s generally greater confidence in the 50% 1n-
jury value than in other values such as, say, those for 10% or 90% injury
This 1n turn means that there 1s greater confidence n the value of m* than
there 1s 1n that of ¢ The lhkely form of the limits on the relation between
the mjury factor and the probit for injury 1s sketched 1n Fig 3, which
shows that the limits tend to be relatively close at the 50% injury value but
to diverge for lower and higher values The results obtained here indicate
that, provided ¢ 1s small, the estimate of the number of people 1njured 1s not
very sensitive to errors in the value of this parameter

Confidence
Limits

Probit, Y

LN X

Fig 3 General form of the confidence hmits for relation between 1njury
factor and probit for injury

It follows from this that 1in using this model to make an assessment or to
determine the error involved 1t may be preferable to use separate probit
equations for homogeneous sections of the population, each with a relative-
ly small spread, rather than a single probit equation for the whole popula-
tion with a large spread

The value of the model 1s seen, however, as much 1n 1ncreasing under-
standing of the impact of hazards on the surrounding area as in providing a
short cut estimation method

The model 1s based on the assumption of the inverse square law for the
decay of the intensity of the physical effect This has been justified using
simple models for fire, explosion and toxic release Another assumption 1s
that the injury factor 1s related to the intensity of the physical effect linear-
ly or by a power law These two features would bear further study
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List of symbols

C concentration (various units — see text) (Table 2 only)
c diffusion parameter (m™?) (Appendix 1 only)
dp density of population (persons/m?)

Dyq  total integrated dosage ((kg/m3) min)

E heat radiated by fireball (kW)

f(x)  density function for injury

F heat radiated by fireball on target (kW/m?) (Appendix 1 only)
F(x) distribution function for injury

1 normalised intensity of physical effect

J mmpulse (N s/m?)

k,, k, constants in probit equation

L distance from centre of fireball to target (m)

m alternative location parameter 1n lognormal distribution
m* location parameter 1n lognormal distnibution

n diffusion index

n,(r) number of people 1njured at distance r

N, total number of people injured

p° peak overpressure of explosion (N/m?)

probability of injury

mass rate of release (kg/s)

mass released (kg)

radial distance (m)

radius of physical phenomenon (m)
scaling parameter (m)

time (varnious units — see text)

time 1nterval (min)

wind velocity (m/s)

mass of explosive (kg)

normalised injury factor

downwind distance (m) (Appendix 1 only)
probit

scaled distance (m/kg" ?)

spread parameter in lognormal distnbution (62 = vanance)
concentration (kg/m3)

correction factor for effect of vanance
normal distribution function

eexquﬁaxgzq-‘-;gﬁgom

Subscript
50 for probability of 1njury equal to 0.5
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Appendix 1

The sumpler models for the physical phenomena which are of interest in
hazards work tend to give an approximately inverse square law for the decay
of the mntensity of the physical effect with distance

The heat radiation from a fireball 1s given by Roberts [8] as

F=Ej4nL? (Al11)

where E 1s the heat radiated (kW), F the heat radiated on the target (kW/m?)
and L the distance from the centre of the fireball to the target (m)

Similar equations apply to other types of fire such as pool fires and flares
Thus the equation for heat radiation from a flare given by Hajeck and Lud-
wig [9] and quoted in API RP 521 [10] has this general form

The peak overpressure from the explosion of a high explosive 1s a function
of the scaled distance

p° = f(2) (A12)
with
z=r/WY3 (Al 3)
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where p° 1s the peak mcident overpressure (N/m?), W the mass of explosive
(kg) and z the scaled distance (m/kg!' %) The function in eqn (Al 2) 1s
usually provided in graphical form, such as the curves given by Baker et al
[11] However, over a large part of the overpressure range of practical
interest the curve, which 1s a log—log plot, has a slope of approximately —2
so that

p° = 1/P (Al 4)

The vanation with distance of the concentration of a toxic gas cloud 1s
more complex Here again, however, many situations approximate to an in-
verse square law

For a neutral density gas a commonly used set of equations are those of
Sutton [12] For an mnstantaneous release the concentration x (kg/m?) at
ground level on the centre line of the cloud and at cloud centre 1s

2Q*

X = 3 2C% (ut)C-» (Al 5a)

For neutral conditions, n = 0 25

x « 1/x*6 (Al 5b)

The total integrated dosage, Dy,g ((kg/m?)s), 1s

Dpg = L_' (Al 6a)
nC?u(ut)?™"

Setting n =0 25

Dyg = 1/x' (Al 6b)

For a continuous release the concentration at ground level on the centre
line of the cloud 1s

2Q
X = n_——Czuxz'" (Al 7a)
Settingn =0 25
x « 1/x! 78 (Al 7b)

The total integrated dosage 1s obtained by assuming that the continuous re-
lease 1n fact lasts for some finite time Then the {otal integrated dosage 1s

Dyge= 1/x' 7™ (A1 8)

As stated earher, the decay predicted by more complex models, such as
those for unconfined vapour cloud explosion and heavy gas dispersion, 1s
beyond the scope of the present treatment
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Appendix 2

The model considered is that in eqns (11)—(13) An alternative location
parameter, m, may be defined
m = exp m¥* (A2 la)
m*=Inm (A2 1b)

Some other relations which are relevant are as follows The injury factor
x50 and the radius r5, at which the probability of injury 1s 50% (P = 0 5)
are obtamed from eqns (9)—(10) by putting Y = 5 so that

Xso = exp m* (A2 2a)
=m (A2 2b)

From eqn (13)

Fso = ro/Xsq (A2 3)
=ro/m'? (A2 4a)
= ro/exp (m*/2) (A2 4b)

It may be noted that as m* tends to zero, rs, tends to r,

Now let
y=lnx (A2 b)
Then
y

e J exp [~(y — m*)*/20%] dy (A2 6)

Let

z=(y—m*)o (A27)

Then

2

P = _Nf exp (—2%/2) dz (A2 8a)

=d(z2) (A2 8b)

where ®(z) 1s the normal cumulative distribution function
Then, from eqns (13), (A2 5), (A2 7) and (A2 8), eqn (11) becomes

Ni= [ 2r1dp®[(2lnro— 2Inr— m*)/o]rdr (A29)

0
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Let

u=(2nr, — 2Inr— m¥)/o (A2 10)

Then

N, =nridy exp (—m*) f o exp(—ou)®(u)du (A2 11a)
=7ry dp exp (—m*)I (A2 11b)

where

I= [ o expl—ou)d(u)du (A2 12)

Integrating by parts

I=[exp(—ou)d(w)]™n + [  exp(—ou)d'(u)du (A2 13)

The limits are
U~ oo exp(—ou)d(u)=0X 1=0
u—>—o exp(—ou)p(u)=0

The derivation of the second of these limits 1s as follows For u < —4¢
u u

f exp (—v?/2) dv < I f exp (20v) dv =
(2_")!/2

P(u)= (27) 2

—o0 -0

1
———— exp (20u A2 14
Gy g P (200) ( )
since for v< —40, exp (—v*/2)< exp (20v) Hence for sufficiently large
negative u, exp (—ou)®(u) < k exp (ou) Hence the first term 1n eqn
(A2 13)1s zero

Then

I= [ exp(—ou)'(u)du (A2 15a)

-0

1 -
= (Zm) f exp (—ou) exp (—u?/2) du (A2 15b)

-0

Completing the square 1n the combined exponent
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1 oo
" (20’ f exp (0%/2) exp [—(u +0)*/2] du (A2 16)

B

= exp (0%/2) (A217)

since the remaining factor 1s simply the normal probability integral with mean
—o and vanance 1
Then eqn (A2 11) becomes

N, = nr}d, exp (—m*) exp (0?/2) (A2 18)

and hence from eqn (A2 3)

N, = rriodp exp (0%/2) (A2 19)
= nriodpo (A2 20)

where

¢ = exp (0%/2) (A2 21)



